
SPOT PARKING API
Open Data Zone Groups
Version 1.4 – Document Version 1.05 02 October 2020

Spot Parking Pty Ltd - www.spotparking.com.au

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 2

© 2020 Spot Parking Pty Ltd. All rights reserved.

Trademarks

All trademarks or registered trademarks are the property of their respective owners.

Disclaimer

The information provided in this document is provided "as is" without warranty of any kind. Spot
Parking Pty Ltd disclaims all warranties, either express or implied, including the warranties of
merchantability and fitness for a particular purpose. In no event shall Spot Parking Pty Ltd be
liable for any damages whatsoever including direct, indirect, incidental, consequential, loss of
business profits or special damages, even if Spot Parking Pty Ltd or its suppliers have been
advised of the possibility of such damages.

Document Lifetime

Spot Parking Pty Ltd may occasionally update documentation between releases of the related
software. Consequently, if this document was not provided recently, it may not contain the most
up-to-date information. Please email developers@spotparking.com for the most current
information.

Where to get help

Spot Parking support, product, and licensing information can be obtained as follows.

Product information — For general information regarding Spot Parking products, licensing, and
service, go to the Spot Parking website at:

 https://www.spotparking.com.au

Technical support — For technical support, please email opendatapi@spotparking.com.au.

Your comments

Your suggestions will help us continue to improve the accuracy, organization, and overall quality
of the user publications. Please send your opinion of this document to:

 opendataapi@spotparking.com.au

If you have issues, comments, or questions about specific information or procedures, please
include the title and, if available, the revision, the page numbers, and any other details that will
help us locate the subject that you are addressing.

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 3

Preface
Intended Audience

This guide is part of the Spot Parking Open Data API specifications documentation
set. It is intended for use by developers as a reference for integrating Spot Parking’s
parking zone information with existing capabilities.

Readers should be familiar with the following: RESTful APIs, Google Protocol Buffers

Style Conventions

The following style conventions are used in this document:

Bold

Names of commands, options, programs, processes, services, and utilities

Names of interface elements (such windows, dialog boxes, buttons, fields, and menus)

Interface elements the user selects, clicks, presses, or types

Italic

Publication titles referenced in text

Emphasis (for example a new term)

Variables

Courier

System output, such as an error message or script

URLs, complete paths, filenames, prompts, and syntax

Courier italic

Variables on command line

User input variables

< > Angle brackets enclose parameter or variable values supplied by the user

[] Square brackets enclose optional values

| Vertical bar indicates alternate selections - the bar means “or”

{ } Braces indicate content that you must specify (that is, x or y or z)

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 4

Table of Contents
1. Overview .. 7

1.1. Conventions ... 7

1.2. Current Version ... 7

1.3. Schema Summary .. 7

1.4. HTTP Requests .. 8

1.5. HTTP Methods .. 8

1.6. Authentication ... 8

1.7. URL Format .. 8

2. Data Structures and Relationships ... 9

2.1. Schema Overview .. 9

2.2. Type Enum Definitions .. 9

2.3. Data Structures .. 11

3. API Reference Documentation .. 20

3.1. Overview .. 20

4. Query .. 21

4.1. Resource Information ... 21

4.2. Request .. 21

4.3. Headers ... 21

4.1. Parameters .. 22

4.2. Response ... 23

4.3. Examples ... 23

5. Status Codes ... 26

6. Geohashes ... 27

6.1. Overview .. 27

7. Spot Protocol Buffer Services ... 31

7.1. Overview .. 31

8. Protobuf Specification ... 32

8.1. Spot Protobuf Specification .. 32

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 5

8.2. Struct Protobuf Extension Specification ... 35

8.3. Timestamp Protobuf Extension Specification ... 38

9. Google Protocol Buffers references ... 43

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 6

Document History
Paper copies are valid only on the day they are printed. Contact Spot Parking if you are in
any doubt about the accuracy of this document.

Revision History

This document has been revised by:

Revision Number Revision Date Summary of Changes Author

v1.0 22-09-2020 Initial Revision Scott Taylor

V1.05 02-10-2020 Reduced parameter support
to simply usage for Open
Data customers

Scott Taylor

Reference Documents

Please see the following documents for more information:

Document Name Version Author

Open Data API Overview V1.01 Spot Parking

Open Data Dynamic Data 1.4
API Reference Documentation

V1.0 Spot Parking

Geohash Wikipedia Entry As per Wikipedia

https://en.wikipedia.org/wiki/Geohash

Community authored

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 7

1. Overview
The Spot Parking platform gives you a group of APIs along with client libraries, language-
specific examples, and documentation to help you develop applications that integrate with
Spot Parking.

The Zone Groups API provides capabilities to determine local parking rules and
entitlements within specified location(s). It caters for a variety of different query types to
suit typical use-cases. It has been designed with performance-first principles – meaning it
has sacrificed some initial ease-of-use for optimal efficiency. In particular, the API uses
Google Protobuf (protobuf) responses exclusively, and the reader should be familiar with
some of the basic concepts of this technology before proceeding (some recommendation
references are available at the back of this document).

Throughout the document, recommended approaches for how the API should be utilized
are specified, and it is highly encouraged that these are adopted. In typical usage, the Zone
Groups API generates a rich, relatively large dataset of information, and it is necessary to
consider how this data is best consumed, especially on resource-constrained devices.

To use this API, you must be provided with an API Token. If you haven’t been provided
with an API Token, please contact opendataapi@spotparking.com.au for information on
how to obtain one.

1.1. Conventions
We use the following conventions in this document:

• Responses are listed under ‘Responses’ for each method.

• Responses are in Google Protocol Buffers (protobuf) format.

• Request parameters are mandatory unless explicitly marked as Optional.

1.2. Current Version
The Zone Groups API will continue to evolve, and changes to this API are managed
through a version management scheme. Versioning access is maintained explicitly via the
URL path structure, and not within HTTP Request-Headers. Spot Parking will endeavor to
maintaining previous versions of the API ongoing unless formal advanced notice is
provided for its decommissioning.

1.3. Schema Summary
Due to the use of Google Protocol Buffers for responses, schemas are already formally
documented within a .proto file. See section titled Protobuf Specification for a
reproduction of this file.

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 8

A full explanation of the data components and their relationships can be found in the
section titled Data Structures and Relationships.

All API access is over HTTPS using an authenticated token, and accessed from the
https://data-collection-api.spotparking.com.au base URL path.

All data is sent in JSON format and received encoded in Google Protocol serialization
format.

All GPS coordinates are provided using WGS 84 coordinate system projections.

1.4. HTTP Requests
API requests must be written as HTTPS requests, and include the following components:

• HTTP Method: Only POST is supported in Zone Query API requests

• URL: As specified in specific API specification (case is important)

• HTTP Headers: Authentication and encoding headers are expected.

• Request Body: As specified in specific API specification (case is important)

1.5. HTTP Methods
The Zone Query API supports POST method only. This is due to the need to provide
query parameters in JSON object notation within the HTTP Request Body. Utilizing POST
method ensures compatibility with any third-party client HTTP libraries.

1.6. Authentication
Authentication is achieved via the use of a Token, provided to you by Spot Parking. The
Token must be passed for all API requests within the HTTP Headers. Invalid or missing
tokens will result in a HTTP Status Code 401 Unauthorised response.

1.7. URL Format
Describe the format of the URL.

The API URL uses the following format:

<protocol>://<host>:<port>/1.4/<MethodName>

Example:

POST https://data-collection-api.spotparking.com.au/1.4/query/zoneGroups

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 9

2. Data Structures and Relationships

2.1. Schema Overview
A relationship diagram of the Zone Query API response output is as below. A full
explanation of each component is contained in the section titled Data Structures.

2.2. Type Enum Definitions
The following section describes the type enum definitions used within the Zone Query API
response schema.

2.2.1. Parking Condition

The parking condition describes the parking permission status for an individual parking
zone based upon the supplied API request parameters. The same parking zone may have a
different parking condition depending on the userProfile parameter provided within the
request. For example, if the user specifies access to a disabled permit, then a disabled

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 10

space may have a different parking condition compared to a user who does not. The
parking condition type does not specify the actual signage classification.

Value Identifier Description

UNRESTRICTED Non-metered Parking with no maximum time durations.

RESTRICTED Non-metered Parking with a maximum time duration
specified.

METERED Metered Parking.

NO_PARKING No parking permitted.

DROP_OFF_PICKUP_ONLY Vehicle may be stationary only whilst dropping off or
picking up passengers

INHERIT_TARIFF_FROM_PARENT (96) Tariff is inherited from its parent. Used for example to
apply general tariff structure for bays within garages and
multi-levels

INHERIT_FROM_PARENT (97) Business rule is inherited from its parent. Used for example
to apply business rules for bays within garages and multi-
levels

UNDEFINED (98) No defined parking condition identified. (should be ignored)

INVALID (99) Invalid parking condition identified. (should be ignored)

2.2.2. Zone Type

The zone type describes the nature of an individual zone reference. It has relevance for
both client visualization and calculations.

Value Identifier Description

NORMAL On-street parking definition.

OUTLINE Outline of a parking-related POI, such as a parking lot or garage.

BAY Off-street parking definition.

BAY_POINT Center location of an individual parking bay.

GARAGE Garaged off-street parking facility outline

MULTI_LEVEL Multi-level off-street parking facility outline

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 11

POI Point of Interest

INVALID (99) Invalid ZoneType detected. (should be ignored)

2.2.3. Tariff Type

The tariff type describes how tariff values should be calculated to determine any meterage.

Value Identifier Description

PRO_RATED Tariff is pro-rated without cap consideration.

PRO_RATED_WITH_DAILY_CAP Tariff is pro-rated with a maximum daily cap.

PRO_RATED_WITH_PERIOD_CAP Tariff is pro-rated with a schedule interval maximum cap.

FIXED Tariff is a fixed fee regardless of stay.

FREE No tariff.

STEPPED_IN_DURATION Tariff structure is complex consisting of different tariff charges
based on duration of stay.

SPECIAL_TARIFF Tariffs such as special event tariffs (early bird specials etc).

2.3. Data Structures
The following section describes the individual data structures used within the Zone
Groups API response.

2.3.1. GeoHashCollectionOfZones

The GeoHashCollectionOfZones is the master (root) container for all Zone Groups API
responses. It contains a singular field containing a list of GeoHashedZoneCollection
instances.

Field Type Description

references Array<GeoHashedZoneCollection> Contains a list of individual geohash zone
collections.

2.3.2. GeoHashedZoneCollection

A GeoHashedZoneCollection contains all of the parking zone information for a particular
geohash reference. It is best considered like as a miniature database, containing a list of

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 12

zones with associated lookup references to common conditions and tariffs. It also includes
profile information that self-describes the various user profile information that may affect
the data output for this particular geohash collection in subsequent requests.

Field Type Description

geohash String.

See Geohash section for further
information on Geohashes.

The geohash for the collection of parking
zone information.

zones Array<Zone> A list of 0..n parking zone definitions
contained within the area referenced by
the geohash.

conditions Array<google.protobuf.Struct>

A condition is a JSON object that
describes the characteristics of the
dominant business rule affecting
the parking zone.

There is only one mandatory
attribute within the JSON object
called ‘category’. This refers to the
business rule set. Additional
attributes may also be present.

A list of 0..n unique conditions found in
parking zones within the area referenced
by the geohash.

Example condition object:
{

 “category”: “NO_PARKING”,

 “areaPermitExcepted”: 20,

 “towaway”: true

}

tariffs Array<Tariff> A list of 0..n unique tariff definitions
found in parking zones within the area
referenced by the geohash.

profiles google.protobuf.Struct

A profile is a JSON object that
describes the types of userProfile
attributes that could generate
alternative zone information for this
geohash.

This can be seen as a self-describing
field in that only those attributes
that affect zone information output
are documented.

Example profile object:
{

 “disabledPermit”: true,

 “areaPermit”: [“20”],

 “_vehicleType”: [“TAXI”, “BUS”]

}

Note: those attributes prefixed with an
“_” indicate an attribute which should be
considered mutually exclusive. ie. A user
profile should only request one of the
listed values, not multiple.

additionalTypeDetails Array<google.protobuf.Struct>

An additional type detail is a JSON
object that provides additional
metadata associated with the

A list of 0..n unique additional type
details found in parking zones within the
area referenced by the geohash.

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 13

parking asset. This can provide
additional information regarding
relationships between different
parking assets (eg. parent-child
relationships) or custom naming
information etc.

Geohash References Only Designations

For some zone types (outlines), the API may return 2 GeohashedZoneCollection instances
for the same geohash reference. In this case, the second geohash reference key is
structured in the form <geohash>_referenceOnly. Because zone outlines could extend
across multiple geohash areas, if a part of an outline is contained within the geohash area it
is provided as a reference only. Geohash reference only designations are useful only for
visualization needs (where an outline may be slightly visible within the current map
bounds but should still be displayed).

2.3.3. Zone

A Zone contains all the information necessary to determine the specifics of an individual
parking zone, including its geometry. A zone has various types, the most common being
on-street parking (normal), parking POIs (outlines) or off-street parking bays (bays).

Field Type Description

schedule Schedule A zone has a schedule which dictates
when what business rules apply at
certain times. See Schedule section
for more information.

paths Array<Path> A zone must have relevance only
within a defined geographic area.
For on-street parking zones, this is
defined by a list of 2 or more
consecutive coordinates that
combine to construct a polyline.

In the case of off-street parking
zones, this is defined by a list of 2 or
more consecutive coordinates that
combine to construct a polygon.

For outlines, if the zone consists of
one simple polygon, this may be
represented as a list of 2 or more
consecutive coordinates that
combine to construct a polygon. For
outlines which consist of multiple

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 14

polygons, the object_collections
field is used instead.

id String representing a GUID of the
particular zone instance.

A unique identifier for parking zone
information that can be used for
referencing a particular zone
instance within a collection of zones.

type ZoneType (enum) Identifies the type of zone
information being represented
(normal, outline, bay)

complex_path Boolean A flag indicating whether path
information is contained within the
object_collections field rather than
in the paths field.

custom_name String If the zone has an unique reference
(such as a name of a Garage) then it
may be contained here.

level String If the zone information pertains to a
specific level of a multiple-level
parking facility, then it is identified
here.

object_collections Array<ComplexObjectCollection> For zones that require complex
rendering, path information is
contained here. This is a list of 0..n
ComplexObjectCollection, each of
which represents a unique polygon
object.

additionalTypeDetailIndex Int32 Refers to additional type detail
information contained within the
additionalTypeDetails field of the
parent GeoHashedZoneCollection.

2.3.4. Schedule

A Schedule represents what business rules apply when within a parking zone. Although
the Spot Parking platform handles multiple schedules per parking zone (to accommodate
different user profile parameters), only one is returned per zone within a Zone Query API
response.

Field Type Description

interval Int32 An interval defines the unit of time (in
minutes) for each unit of the schedule. For
example, an interval of 1 indicates time units

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 15

are provided with a granularity of 1 minute.
An interval of 5 would indicate 5 minutes.

Spot currently generates schedules with an
interval setting of 1.

total_intervals Int32 The total number of intervals contained
within the schedule. To determine the total
number of minutes covered by a schedule,
calculate:
interval * total_intervals =
total_minutes

base_date_timestamp google.protobuf.Timestamp The base date for where time intervals is
calculated from. To calculate the specific
time represented by a time interval, calculate
(for example start):
base_date_timestamp + (start *
interval) minutes =
interval_start_time

schedule_intervals Array<ScheduleIntervals> A list of 1..n defined interval ranges where
certain business rules apply.

Interval_dst_offset Int32 If a daylight savings change occurs during the
duration of the schedule, then this field will
indicate the offset in minutes.

For example, if the schedule lost an hour,
then this value will be -60. If the schedule
gained an hour, this value will be 60.

2.3.5. Schedule Intervals

A Schedule Intervals instance contains information regarding a specific business rule
setting for a defined time period (represented as a range of intervals).

Field Type Description

start Int32 The start interval unit for when the business
rules applies. To determine number of
minutes from base date use the following
calculation:
start * interval

end Int32 The end interval unit for when the business
rules applies. To determine the number of
minutes from base date use the following
calculation:
end * interval

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 16

max_duration Int32 The maximum duration for a stay applying to
the specified business rule in minutes.

For example, for 2 hours, this would be
represented as 120. If no maximum
duration is specified, then this value will be
0.

start_dst_offset Int32 Represents the offset of any DST change
occurring before the start of this particular
schedule interval, but after the schedule
base date.

end_dst_offset Int32 Represents the offset of any DST change
occurring before the end of this particular
schedule interval, but after the schedule
base date.

If start_dst_offset and end_dst_offset are
different values, then the DST change has
occurred during the schedule interval.

tariff_index Int32 Refers to tariff information contained within
the tariffs field of the parent
GeoHashedZoneCollection instance.

parking ParkingCondition (enum) Represents the parking permission status
associated with the business rule and the
requested user profile.

condition_index Int32 Refers to condition information contained
within the conditions field of the parent
GeoHashedZoneCollection.

To determine the ScheduleIntervals instance associated with a date and time of enquiry:

1) Determine the enquiry interval value

Enquiry interval = Math.Floor((Minutes between Enquiry Timestamp and Base Date
Timestamp) / Schedule.interval)

2) Search for ScheduleIntervals instance

If (Enquiry interval >= ScheduleIntervals.start) && (Enquiry interval <
ScheduleIntervals.end)

2.3.6. Path

The Path represents an atomic latitude and longitude coordinate. It is used in multiple
consecutive pairs to identify geographical areas where parking zone information applies.

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 17

Field Type Description

latitude Double The latitude coordinate of a coordinate pair
represented in decimal notation.

longitude Double The longitude coordinate of a coordinate
pair represented in decimal notation.

2.3.7. Complex Object Collection

A Complex Object Collection instances represents a complex polygon object with one or
more polygon paths. This is useful for zone outlines types which have inner holes within
their main polygon.

Field Type Description

objects Array<ComplexObject> A list of ComplexObject instances. The first
instance within the list represents the outer
polygon layer. Additional instances within
the list represent inner polygons that
generate internal holes within the outer
polygon layer.

2.3.8. Complex Object

A Complex Object represents a list of coordinates that together represent a polygon object.

Field Type Description

paths Array<Path> A list of Path instances that together
represent a polygon of consecutive GPS
coordinates.

2.3.9. Tariff

A Tariff instance represents rating information in relation to meterage.

Field Type Description

charge_interval Int32 The length of time in minutes for which a
new charge should be applied. A value of 1
indicates a unit size of 1 minute. A value of
5 indicates a unit size of 5 minutes.

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 18

currency String Currency abbreviation based on the ISO
international standard – 4217.

Example: ‘AUD’, ‘USD’, ‘GBP’, ‘EUR’

display_charge Float The value commonly displayed for fee
information and is used as the base rate for
meterage calculation.

display_charge_unit_size Int32 The number of charge intervals represented
in the display charge.

For example, if charge_interval = 1 (minute)
and the display_charge = $2 (per hour) then
the display_charge_unit_size = 60 (minutes).

minimum_charge_unit Int32 The minimum number of charge intervals
that will be charged, regardless of stay
duration.

tariff_type TariffType (enum) Defines how meterage is calculated.

capped_charge Float For those TariffTypes with a capped
component, this value represents the
maximum capped charge.

stepped_tariffs Array<SteppedTariff> List of Stepped Tariff conditions for complex
STEPPED_IN_DURATION tariffs.

special_tariffs Array<SpecialTariff> List of Special Tariff conditions for complex
STEPPED_IN_DURATION tariffs.

For example, for an area with $4.50 per hour charged pro-rata by minute, the
display_charge would be 4.5, display_charge_unit_size would be 60, and charge_interval
would be 1.

2.3.10. Stepped Tariff Object

A Stepped Tariff Object represents a stepped tariff condition that makes up a complex
STEPPED_IN_DURATION tariff

Field Type Description

less_than_duration Int32 The maximum number of minutes (in
duration) for which this tariff takes effect.

tariff_index Int32 Refers to tariff information contained within
the tariffs field of the parent
GeoHashedZoneCollection instance.

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 19

event_based Boolean Whether this tariff applies based upon a
special event (such as ticket validated).

event String The name of the event for which this
applies.

2.3.1. Special Tariff Object

A Special Tariff Object represents a special tariff condition that makes up part of a
complex STEPPED_IN_DURATION tariff. An example would be an early bird special.
Special Tariffs may apply only if special conditions are met – eg. entry between a time
range and exit between a time range.

Field Type Description

special_name String A user-friendly string associated with the
tariff.

tariff_index Int32 Refers to tariff information contained within
the tariffs field of the parent
GeoHashedZoneCollection instance.

entry_begin Int32 The time in minutes from midnight for which
entry must be from.

entry_end Int32 The time in minutes from midnight for which
entry must be within.

exit_begin Int32 The time in minutes from midnight for which
exit must be from.

exit_end Int32 The time in minutes from midnight for which
exit must be within.

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 20

3. API Reference Documentation

3.1. Overview
The Zone Groups API is a singular API resource that serves multiple purposes. Its
flexibility is contained within its request payload, which is designed to support a multitude
of complex queries.

Note that the term method and resource (and object) tend to be used interchangeable in
API documentation.

Method Purpose

Query Generates a list of applicable parking zones

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 21

4. Query
Given a set of query parameters, returns detailed information about parking zones that
meet the requested criteria.

4.1. Resource Information
The Zone Groups API Query resource information is as follows:

Method Purpose

Response formats Google Protocol Buffer (GeoHashCollectionOfZones)

Requires authentication? Yes (X-Api-Token Header)

Rate limited? No

Requests N/A

4.2. Request
The Zone Groups API Query resource request information is as follows:

Method URL

POST https://data-collection-api.spotparking.com.au/1.4/query/zoneGroups

Note: Please take consideration of case in all API calls.

4.3. Headers
The Zone Groups API Query resource requires the following HTTP Header information to
be passed within the request in order to function:

Header Description Example / Setting

X-API-Token Authentication Token

(provided by Spot Parking)

Example:
fHoX5l4bo22Xvv7n5dQDaFf7p

Content-Type Request Body Type Information application/json

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 22

4.1. Parameters
The Zone Groups API Query resource expects all parameters to be passed within a JSON
object structure passed via the Request Body. The following parameters are acceptable or
expected:

Name Type Description Required

geohashes An array of
Geohashes
(string format) to
retrieve
information for.

A list of geohashes to retrieve parking
information for. All contained geohashes
must be the same precision level. Level of
precision supported is between 5 – 8
geohash characters.

See section Geohashes for further
background on geohashes.

Mandatory

userProfile JSON structure
containing user
profile
attributes.

Provides user context into the query. For
example, to indicate access to a permit type
(disabled, resident etc), type of vehicle
license or vehicle type.

(See subsection Request Parameter
Examples for examples)

The available profiles supported in queries
are always passed back in Zone Groups API
responses within the field
GeoHashedZoneCollection->profiles

Optional
(defaults to
empty
profile)

4.1.1. Request Parameter Examples

The following examples demonstrates how parameters can be provided to perform certain
types of queries.

{

 "geohashes": ["r3gx27","r3gx26","r3gx23","r3gx2e","r3gx2d","r3gx29"],

}

The most typical usage. Retrieves all parking zone information within the areas defined
by the group of specified geohashes.

By default, using geohashes with 6-character will provide the fastest system response as they are
automatically pre-cached upon system generation.

{

 "geohashes": ["r3gx27","r3gx26","r3gx23","r3gx2e","r3gx2d","r3gx29"],

 "userProfile":{},

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 23

}

Retrieves all parking zone information within the areas defined by the group of specified geohashes.
Note: the userProfile being passed is an empty object – this is equivalent to not providing a
userProfile parameter.

{

 "geohashes": ["r3gx27”],

 "userProfile":{

 “disabledPermit”: true

 }

}

Retrieves all parking zone information within the area defined by the specified geohash. Note: the
userProfile being passed has a parameter disabledPermit which is set to true. The entitlements of
holders with disabled parking permits will be provided within the response. Available user profile
parameters for that area are always provided back in every zoneGroup query response.

4.2. Response
The Zone Group API Query provides a response in Google Protocol Buffers format,
according to the structure documented in the section Data Structures and Relationships.
The API will provide the response with a Content-Type HTTP-Header value of
application/octet-stream. Depending on the language this may be represented as a
Buffer or an array of bytes. To deserialise the data into an usable form, use the provided
client library decode function.

Please refer to the Spot Protocol Buffer Services for information about Spot Parking’s own
client libraries supporting the most popular languages.

The advantage of Google Protocol buffers is that the respective client libraries already fully
understand the underlying data structures and their relationships, and the decoding
function transforms the API responses into well-formed types, ready for use. They are also
written natively, thus take full advantage of the processing capability.

4.3. Examples
Example use of Spot’s Javascript / Node.js library, showing the fetching of parking zone
information from the backend, and the deserialization of the data into usable objects, ready
for use.

const fetch = require('fetch-retry');

import { spotparking } from "../server/protobuf/v1.4/javascript/spotparking_v1_4";

const geohashes = ["r3grgb", “r3grez”];

async function start() {

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 24

 try {

 let results = await retrieveScheduleInformation(geohashes);

 let geohashCollectionOfZones = spotparking.GeoHashCollectionOfZones.decode(results);

 geohashCollectionOfZones.references.forEach(collection => {

 });

 process.exit(0);

 }

 catch (error) {

 console.error("An error has occurred: ", error);

 process.exit(1);

 }

}

async function retrieveScheduleInformation(geohashes: string[]): Promise<Buffer> {

 return new Promise<Buffer> (async (resolve, reject) => {

 try {

 if ((!isArray(geohashes)) || (isEmpty(geohashes)) {

 return reject("No geohashes provided");

 }

 let path = "https://data-collection-api.spotparking.com.au/1.4/query/client/zoneGroups";

 let headers = {

 "Content-Type": "application/json",

 "X-Api-Token": "<Token-Provided>"

 };

 let parameters = {

 geohashes,

 userProfile: {}

 };

 let results = await fetch(path, {

 method: 'POST',

 body: JSON.stringify(parameters),

 headers,

 retries: 10,

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 25

 retryDelay: 200,

 retryOn: [504]

 });

 resolve(results.buffer());

 }

 catch (error) {

 reject(error);

 }

 });

}

start();

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 26

5. Status Codes
The API uses the following HTTP status codes. 2XX – Success; 4XX - Error in client; 5XX -
Error in server.

Status Code Description

200 OK

201 Created

202 Accepted (Request accepted, and queued for execution)

400 Bad request

401 Authentication failure

403 Forbidden

404 Resource not found

405 Method Not Allowed

409 Conflict

412 Precondition Failed

413 Request Entity Too Large

500 Internal Server Error

501 Not Implemented

503 Service Unavailable

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 27

6. Geohashes

6.1. Overview
A geohash is a convenient way of expressing a location (anywhere in the world) using a
short alphanumeric string, with greater precision obtained with longer strings. There are
varying formats of geohashes available, some open-source and others proprietary. Spot’s
underlying infrastructure supports the use of an open-source implementation (see
https://www.movable-type.co.uk/scripts/geohash.html) to remain independent from map
provider-focused solutions.

The illustration below clearly shows how geohashes works. In this case, the geohash
reference ‘r’ refers to an coordinate somewhere within the r bounding box. By adding an
additional character ‘5’ further narrows down the size of the reference bounding box (by a
factor of 1/32). Every additional character (known as a precision) further divides by a factor
of 1/32). Ultimately a geohash reference with a precision of 12 (12 characters) can refer to
an area roughly ≤ 3.72cm* x 1.86cm anywhere on earth (* due to the radial nature of the
earth, this value decreases in size the closer the coordinate is to the pole regions).

Zone group queries can handle requests for geohashes between 5 – 8 characters in
precision. This provides for the ability to retrieve information in a tiled format which suits
most use-cases for its use. Typically, for most general purposes such as for map

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 28

visualisation, providing geohashes with 6 character precisions are recommended. The
relative size of the supported precisions are as follows:

Precision Area Dimensions

5 ≤ 4.89km × 4.89km

6 ≤ 1.22km × 0.61km

7 ≤ 153m × 153m

8 ≤ 38.2m × 19.1m

The following illustration shows the area size of queries possible with 5, 6 and 7 (small box
within r3gx2d box) character precision. Remember also that zoneGroup queries support
the retrieval of information for multiple geohashes within the same request.

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 29

Because geohashes group all information within the same area together, they make
excellent tile-based references, as well as convenient hashable keys for implementing
caching. The structure of the zoneGroup API response is designed specifically with this in
mind.

To generate geohashes from standard latitude-longitude coordinates, there are a multitude
of open-sourced libraries available in various languages – some of which are listed below:

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 30

Language Reference

C https://github.com/simplegeo/libgeohash

C# https://github.com/alexframe/GeoHash.Net

Go https://godoc.org/github.com/mmcloughlin/geohash

Java / Android Internally developed by Spot and available upon request

Javascript / Node.js https://github.com/chrisveness/latlon-geohash

Objective-C https://github.com/lyokato/objc-geohash

PHP https://github.com/skthon/geohash

Python https://github.com/hkwi/python-geohash/wiki

Ruby https://github.com/davetroy/geohash

Rust https://github.com/georust/geohash

Swift Internally developed by Spot and available upon request

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 31

7. Spot Protocol Buffer Services

7.1. Overview
Spot provides standard client libraries for the most common languages (see below) upon
request. As these are all native libraries, deserialization is extremely fast and the incoming
data is transformed into well-formed, well-typed objects, ready for use.

Language

C++

C#

Go

Java

Javascript / Node.js

Objective-C

PHP

Python

Ruby

Rust

Swift

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 32

8. Protobuf Specification

8.1. Spot Protobuf Specification
The following is a replication of the spotparking_v1_4.proto file used to generate responses for
this API specification. Note: There are references to two additional .proto files – these refer to
standard Google Protocol Buffer extension libraries that represent loosely defined structures (like
JSON objects) and timestamps (date reference). For ease of reference these are also provided in full
in subsequent sections.

syntax = "proto3";

import "google/protobuf/struct.proto";

import "google/protobuf/timestamp.proto";

// spotparking.proto

package spotparking;

message GeoHashCollectionOfZones {

 repeated GeoHashedZoneCollection references = 1;

}

message GeoHashedZoneCollection {

 string geohash = 1;

 repeated Zone zones = 2;

 repeated google.protobuf.Struct conditions = 3;

 repeated Tariff tariffs = 4;

 google.protobuf.Struct profiles = 5;

 repeated google.protobuf.Struct additionalTypeDetails = 6;

}

enum ZoneType {

 NORMAL = 0;

 OUTLINE = 1;

 BAY = 2;

 BAY_POINT = 3;

 GARAGE = 4;

 MULTI_LEVEL = 5;

 POI = 6;

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 33

 INVALID = 99;

}

message Zone {

 Schedule schedule = 1;

 repeated Path paths = 2;

 string id = 3;

 ZoneType type = 4;

 bool complex_path = 5;

 string custom_name = 6;

 string level = 7;

 repeated ComplexObjectCollection object_collections = 8;

 int32 additionalTypeDetailIndex = 9;

}

message ComplexObjectCollection {

 repeated ComplexObject objects = 1;

}

message ComplexObject {

 repeated Path paths = 1;

}

message Schedule {

 int32 interval = 1;

 int32 total_intervals = 2;

 google.protobuf.Timestamp base_date_timestamp = 3;

 repeated ScheduleIntervals schedule_intervals = 4;

 int32 interval_dst_offset = 5;

}

message Path {

 double latitude = 1;

 double longitude = 2;

}

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 34

message ScheduleIntervals {

 int32 start = 1;

 int32 end = 2;

 int32 max_duration = 3;

 int32 start_dst_offset = 4;

 int32 end_dst_offset = 5;

 int32 tariff_index = 6;

 enum ParkingCondition {

 UNRESTRICTED = 0;

 RESTRICTED = 1;

 METERED = 2;

 NO_PARKING = 3;

 DROP_OFF_PICKUP_ONLY = 4;

 INHERIT_TARIFF_FROM_PARENT = 96;

 INHERIT_FROM_PARENT = 97;

 UNDEFINED = 98;

 INVALID = 99;

 }

 ParkingCondition parking = 7;

 uint32 condition_index = 8;

}

enum TariffType {

 PRO_RATED = 0;

 PRO_RATED_WITH_DAILY_CAP = 1;

 PRO_RATED_WITH_PERIOD_CAP = 2;

 FIXED = 3;

 FREE = 4;

 STEPPED_IN_DURATION = 5;

 SPECIAL_TARIFF = 6;

}

message Tariff {

 int32 charge_interval = 1;

 string currency = 2;

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 35

 float display_charge = 3;

 int32 display_charge_unit_size = 4;

 int32 minimum_charge_unit = 5;

 TariffType tariff_type = 6;

 float capped_charge = 7;

 repeated SteppedTariff stepped_tariffs = 8;

 repeated SpecialTariff special_tariffs = 9;

}

message SteppedTariff {

 int32 less_than_duration = 1;

 int32 tariff_index = 2;

 bool event_based = 3;

 string event = 4;

}

message SpecialTariff {

 string special_name = 1;

 int32 tariff_index = 2;

 int32 entry_begin = 3;

 int32 entry_end = 4;

 int32 exit_begin = 5;

 int32 exit_end = 6;

}

8.2. Struct Protobuf Extension Specification
To aid in reader understanding, the struct Google Protobuf Extension specification is provided in
full. Refer to the original source at
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/struct.proto.

// Protocol Buffers - Google's data interchange format

// Copyright 2008 Google Inc. All rights reserved.

// https://developers.google.com/protocol-buffers/

//

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 36

// Redistribution and use in source and binary forms, with or without

// modification, are permitted provided that the following conditions are

// met:

//

// * Redistributions of source code must retain the above copyright

// notice, this list of conditions and the following disclaimer.

// * Redistributions in binary form must reproduce the above

// copyright notice, this list of conditions and the following disclaimer

// in the documentation and/or other materials provided with the

// distribution.

// * Neither the name of Google Inc. nor the names of its

// contributors may be used to endorse or promote products derived from

// this software without specific prior written permission.

//

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

syntax = "proto3";

package google.protobuf;

option csharp_namespace = "Google.Protobuf.WellKnownTypes";

option cc_enable_arenas = true;

option go_package = "github.com/golang/protobuf/ptypes/struct;structpb";

option java_package = "com.google.protobuf";

option java_outer_classname = "StructProto";

option java_multiple_files = true;

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 37

option objc_class_prefix = "GPB";

// `Struct` represents a structured data value, consisting of fields

// which map to dynamically typed values. In some languages, `Struct`

// might be supported by a native representation. For example, in

// scripting languages like JS a struct is represented as an

// object. The details of that representation are described together

// with the proto support for the language.

//

// The JSON representation for `Struct` is JSON object.

message Struct {

 // Unordered map of dynamically typed values.

 map<string, Value> fields = 1;

}

// `Value` represents a dynamically typed value which can be either

// null, a number, a string, a boolean, a recursive struct value, or a

// list of values. A producer of value is expected to set one of that

// variants, absence of any variant indicates an error.

//

// The JSON representation for `Value` is JSON value.

message Value {

 // The kind of value.

 oneof kind {

 // Represents a null value.

 NullValue null_value = 1;

 // Represents a double value.

 double number_value = 2;

 // Represents a string value.

 string string_value = 3;

 // Represents a boolean value.

 bool bool_value = 4;

 // Represents a structured value.

 Struct struct_value = 5;

 // Represents a repeated `Value`.

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 38

 ListValue list_value = 6;

 }

}

// `NullValue` is a singleton enumeration to represent the null value for the

// `Value` type union.

//

// The JSON representation for `NullValue` is JSON `null`.

enum NullValue {

 // Null value.

 NULL_VALUE = 0;

}

// `ListValue` is a wrapper around a repeated field of values.

//

// The JSON representation for `ListValue` is JSON array.

message ListValue {

 // Repeated field of dynamically typed values.

 repeated Value values = 1;

}

8.3. Timestamp Protobuf Extension Specification
To aid in reader understanding, the timestamp Google Protobuf Extension specification is
provided in full. Refer to the original source at
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/timestamp.proto.

// Protocol Buffers - Google's data interchange format

// Copyright 2008 Google Inc. All rights reserved.

// https://developers.google.com/protocol-buffers/

//

// Redistribution and use in source and binary forms, with or without

// modification, are permitted provided that the following conditions are

// met:

//

// * Redistributions of source code must retain the above copyright

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 39

// notice, this list of conditions and the following disclaimer.

// * Redistributions in binary form must reproduce the above

// copyright notice, this list of conditions and the following disclaimer

// in the documentation and/or other materials provided with the

// distribution.

// * Neither the name of Google Inc. nor the names of its

// contributors may be used to endorse or promote products derived from

// this software without specific prior written permission.

//

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

syntax = "proto3";

package google.protobuf;

option csharp_namespace = "Google.Protobuf.WellKnownTypes";

option cc_enable_arenas = true;

option go_package = "github.com/golang/protobuf/ptypes/timestamp";

option java_package = "com.google.protobuf";

option java_outer_classname = "TimestampProto";

option java_multiple_files = true;

option objc_class_prefix = "GPB";

// A Timestamp represents a point in time independent of any time zone or local

// calendar, encoded as a count of seconds and fractions of seconds at

// nanosecond resolution. The count is relative to an epoch at UTC midnight on

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 40

// January 1, 1970, in the proleptic Gregorian calendar which extends the

// Gregorian calendar backwards to year one.

//

// All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap

// second table is needed for interpretation, using a [24-hour linear

// smear](https://developers.google.com/time/smear).

//

// The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By

// restricting to that range, we ensure that we can convert to and from [RFC

// 3339](https://www.ietf.org/rfc/rfc3339.txt) date strings.

//

// # Examples

//

// Example 1: Compute Timestamp from POSIX `time()`.

//

// Timestamp timestamp;

// timestamp.set_seconds(time(NULL));

// timestamp.set_nanos(0);

//

// Example 2: Compute Timestamp from POSIX `gettimeofday()`.

//

// struct timeval tv;

// gettimeofday(&tv, NULL);

//

// Timestamp timestamp;

// timestamp.set_seconds(tv.tv_sec);

// timestamp.set_nanos(tv.tv_usec * 1000);

//

// Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.

//

// FILETIME ft;

// GetSystemTimeAsFileTime(&ft);

// UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;

//

// // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z

// // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 41

// Timestamp timestamp;

// timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));

// timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));

//

// Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.

//

// long millis = System.currentTimeMillis();

//

// Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)

// .setNanos((int) ((millis % 1000) * 1000000)).build();

//

//

// Example 5: Compute Timestamp from current time in Python.

//

// timestamp = Timestamp()

// timestamp.GetCurrentTime()

//

// # JSON Mapping

//

// In JSON format, the Timestamp type is encoded as a string in the

// [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the

// format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z"

// where {year} is always expressed using four digits while {month}, {day},

// {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional

// seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),

// are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone

// is required. A proto3 JSON serializer should always use UTC (as indicated by

// "Z") when printing the Timestamp type and a proto3 JSON parser should be

// able to accept both UTC and other timezones (as indicated by an offset).

//

// For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past

// 01:30 UTC on January 15, 2017.

//

// In JavaScript, one can convert a Date object to this format using the

// standard [toISOString()](https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString]

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 42

// method. In Python, a standard `datetime.datetime` object can be converted

// to this format using
[`strftime`](https://docs.python.org/2/library/time.html#time.strftime)

// with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one

// can use the Joda Time's [`ISODateTimeFormat.dateTime()`](

// http://www.joda.org/joda-
time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D

//) to obtain a formatter capable of generating timestamps in this format.

//

//

message Timestamp {

 // Represents seconds of UTC time since Unix epoch

 // 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to

 // 9999-12-31T23:59:59Z inclusive.

 int64 seconds = 1;

 // Non-negative fractions of a second at nanosecond resolution. Negative

 // second values with fractions must still have non-negative nanos values

 // that count forward in time. Must be from 0 to 999,999,999

 // inclusive.

 int32 nanos = 2;

}

	

Spot Parking Open Data API Specification – Zone Groups v1.4 Revision v1.05

© 2020 - Spot Parking Provided under NDA Page 43

9. Google Protocol Buffers references
The following is a list of excellent Google Protocol (protobuf) references for background
information

Reference

Protocol Buffers

https://developers.google.com/protocol-buffers/

Google’s Data Interchange Format

https://opensource.google.com/projects/protobuf

