
SPOT PARKING API
Open Data Dynamic
Data
Version 1.4 – Document Version 1.0 02 October 2020

Spot Parking Pty Ltd - www.spotparking.com.au

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 2

© 2020 Spot Parking Pty Ltd. All rights reserved.

Trademarks

All trademarks or registered trademarks are the property of their respective owners.

Disclaimer

The information provided in this document is provided "as is" without warranty of any kind. Spot
Parking Pty Ltd disclaims all warranties, either express or implied, including the warranties of
merchantability and fitness for a particular purpose. In no event shall Spot Parking Pty Ltd be
liable for any damages whatsoever including direct, indirect, incidental, consequential, loss of
business profits or special damages, even if Spot Parking Pty Ltd or its suppliers have been
advised of the possibility of such damages.

Document Lifetime

Spot Parking Pty Ltd may occasionally update documentation between releases of the related
software. Consequently, if this document was not provided recently, it may not contain the most
up-to-date information. Please email developers@spotparking.com for the most current
information.

Where to get help

Spot Parking support, product, and licensing information can be obtained as follows.

Product information — For general information regarding Spot Parking products, licensing, and
service, go to the Spot Parking website at:

 https://www.spotparking.com.au

Technical support — For technical support, please email opendatapi@spotparking.com.au.

Your comments

Your suggestions will help us continue to improve the accuracy, organization, and overall quality
of the user publications. Please send your opinion of this document to:

 opendataapi@spotparking.com.au

If you have issues, comments, or questions about specific information or procedures, please
include the title and, if available, the revision, the page numbers, and any other details that will
help us locate the subject that you are addressing.

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 3

Preface
Intended Audience

This guide is part of the Spot Parking Open Data API specifications documentation
set. It is intended for use by developers as a reference for integrating Spot Parking’s
parking zone information with existing capabilities.

Readers should be familiar with the following: RESTful APIs, JSON

Style Conventions

The following style conventions are used in this document:

Bold

Names of commands, options, programs, processes, services, and utilities

Names of interface elements (such windows, dialog boxes, buttons, fields, and menus)

Interface elements the user selects, clicks, presses, or types

Italic

Publication titles referenced in text

Emphasis (for example a new term)

Variables

Courier

System output, such as an error message or script

URLs, complete paths, filenames, prompts, and syntax

Courier italic

Variables on command line

User input variables

< > Angle brackets enclose parameter or variable values supplied by the user

[] Square brackets enclose optional values

| Vertical bar indicates alternate selections - the bar means “or”

{ } Braces indicate content that you must specify (that is, x or y or z)

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 4

Table of Contents
1. Overview .. 6
1.1. Conventions ... 6
1.2. Current Version ... 6
1.3. Schema Summary .. 6
1.4. HTTP Requests .. 7
1.5. HTTP Methods .. 7
1.6. Authentication ... 7
1.7. URL Format ... 7
2. Data Structures and Relationships ... 8
2.1. Schema Overview .. 8
2.2. Key/Value Store Responses .. 8
2.3. Type Enum Definitions ... 10
2.4. Data Structures .. 11
3. API Reference Documentation .. 14
3.1. Overview ... 14
4. Simple Query ... 15
4.1. Resource Information .. 15
4.2. Request .. 15
4.3. Headers .. 15
4.1. Parameters ... 16
4.2. Response .. 17
4.3. Example ... 17
5. Complex Query .. 18
5.1. Resource Information .. 18
5.2. Request .. 18
5.3. Headers .. 18
5.4. Parameters ... 19
5.5. Response .. 19
5.6. Example ... 20
6. Status Codes ... 22
7. Determining Available Dynamic Data Fields .. 23

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 5

Document History
Paper copies are valid only on the day they are printed. Contact Spot Parking if you are in
any doubt about the accuracy of this document.

Revision History

This document has been revised by:

Revision Number Revision Date Summary of Changes Author

v1.0 22-10-2020 Initial Revision Scott Taylor

Reference Documents

Please see the following documents for more information:

Document Name Version Author

Open Data API Overview V1.01 Spot Parking

Geohash Wikipedia Entry As per Wikipedia

https://en.wikipedia.org/wiki/Geohash

Community authored

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 6

1. Overview
The Spot Parking platform gives you a group of APIs along with client libraries, language-
specific examples, and documentation to help you develop applications that integrate with
Spot Parking.

The Dynamic Data API provides capabilities to determine additional information in
relation to a parking asset that is dynamic in nature – eg. will change frequently on a
weekly basis. An example of this type of data includes those necessary to understand
(near)real-time occupancy. It caters for a variety of different query and data types to suit
typical use-cases.

Throughout the document, recommended approaches for how the API should be utilized
are specified, and it is highly encouraged that these are adopted.

To use this API, you must be provided with an API Token. If you haven’t been provided
with an API Token, please contact opendataapi@spotparking.com.au for information on
how to obtain one.

1.1. Conventions
We use the following conventions in this document:

• Responses are listed under ‘Responses’ for each method.

• Responses are in JSON format.

• Request parameters are mandatory unless explicitly marked as Optional.

1.2. Current Version
The Dynamic Data API will continue to evolve, and changes to this API are managed
through a version management scheme. Versioning access is maintained explicitly via the
URL path structure, and not within HTTP Request-Headers. Spot Parking will endeavor to
maintaining previous versions of the API ongoing unless formal advanced notice is
provided for its decommissioning.

1.3. Schema Summary
A full explanation of the data components and their relationships can be found in the
section titled Data Structures and Relationships.

All API access is over HTTPS using an authenticated token, and accessed from the
https://data-collection-api.spotparking.com.au base URL path.

All data is sent and received in JSON.

All GPS coordinates are provided using WGS 84 coordinate system projections.

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 7

1.4. HTTP Requests
API requests must be written as HTTPS requests, and include the following components:

• HTTP Method:

• URL: As specified in specific API specification (case is important)

• HTTP Headers: Authentication and encoding headers are expected.

• Request Body: As specified in specific API specification (case is important)

1.5. HTTP Methods
Dynamic Data Simple API requests supports GET method only.

The Dynamic Data Complex API requests supports POST method only. This is due to the
need to provide query parameters in JSON object notation within the HTTP Request Body.
Utilizing POST method ensures compatibility with any third-party client HTTP libraries.

1.6. Authentication
Authentication is achieved via the use of a Token, provided to you by Spot Parking. The
Token must be passed for all API requests within the HTTP Headers. Invalid or missing
tokens will result in a HTTP Status Code 401 Unauthorised response.

1.7. URL Format
Describe the format of the URL.

The API URL uses the following format:

<protocol>://<host>:<port>/1.4/<MethodName>

Example:

POST https://data-collection-api.spotparking.com.au/1.4/dynamic/complex

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 8

2. Data Structures and Relationships

2.1. Schema Overview
Dynamic data is stored within the Spot Parking platform as a simple key/value store
associated with a resource. A resource is a specific parking asset as defined within the
platform and is treated independently of zones.

One or more zones may refer to the same resource – for example in a parking lot (as
depicted in Figure 1) where there are many different configuration of bays (zones), all of
these could refer to the same overall lot resource to determine occupancy information.

Figure 1 - Multiple zones within a lot

2.2. Key/Value Store Responses
As the key/value store can contain a variety of different types, the value returned consists
of both the type (eg. Number, String, Array) and the value itself. The following describes
the schematic layout of the response, along with examples to illustrate potential
implementations of this schema.

 interface DynamicDataResponse<key, T> {
 [key]: ValueResponse<T> | ValueResponseAsArray<T>;

}

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 9

 interface KeyValueResponse {
 value: ValueResponse<T> | ValueResponseAsArray<T>;

}

interface ValueTypeDef {
 type: ValueType;

}

interface ValueResponse<T> extends ValueTypeDef {

 value: Value<T>;
}

interface ValueResponseAsArray<T> extends ValueTypeDef {

 values: Array<T>;
}

enum ValueType {

 Number = "Number",
 Date = "Date",
 Boolean = "Boolean",
 String = "String",
 Link = "Link",

 Array = "Array",
}

type Value<T as BooleanValue|StringValue|DateValue|LinkValue|ArrayValue>

type Array<T as BooleanValue|StringValue|DateValue|LinkValue|ArrayValue>

 type BooleanValue = Boolean;

 type StringValue = String;

 type DateValue = String; // ISO Formatted

 type LinkValue = Link;

 type ArrayValue<T> = Array<T>;

interface Link {

 label: String;
 url: String;

}

Example implementations of the DynamicDataResponse schema for different types:

 {
 "occupancyRate": {
 "type": "Number",
 "value": 0.63
 }
 }

 {
 "occupancyLastUpdated": {
 "type": "Date",
 "value": "2020-09-23T00:36:03.651Z"

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 10

 }
 }

 {
 "links": {
 "type": "Array",
 "values": [
 {
 "type": "Link",
 "value": {
 "label": "Ticket purchase",
 "url": "https://parkandpay.com/checkout?zone=329843"
 }
 },
 {
 "type": "Link",
 "value": {
 "label": "More info",
 "url": "https://website.com/page"
 }
 }
]
 }
 }

2.3. Type Enum Definitions
The following section describes the type enum definitions used within Dynamic Data API
response schema.

2.3.1. Value Types

The ValueType describes the type of data contained within the value|values field of
the ValueResponse|ValueResponseAsArray structures respectively.

Value Identifier Description

Number The field value is a number

Boolean The field value is a boolean

String The field value is a string

Date The field value is a date formatted as a string in ISO
format

Link The field value is a Link structure used for specifying
URLs.

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 11

Array The field value is an array of values.

2.4. Data Structures
The following section describes the individual data structures used within the Dynamic
Data API responses.

2.4.1. QueryRequest
interface QueryRequest {

 [resourceId1]: ResourceBundle;
 [resourceId2]: ResourceBundle;
 [resourceId..n]: ResourceBundle;

 }

2.4.2. QueryResponse
interface QueryResponse {

 [resourceId1]: ResourceBundle;
 [resourceId2]: ResourceBundle;
 [resourceId..n]: ResourceBundle;

 }

The QueryResponse structure consists of a dictionary of one or more resource bundles,
each of which contains dynamic data related to the resource. The key of the dictionary is
the resourceId for easy programmatic access to resource-specific information.

The following is a JSON example of a RequestReponse response containing occupancy
information for two separate resources.

{
 "8f111740-6b83-4dc2-856b-d802e59084fb": {
 "occupancy": [
 {

 "occupancyRate": {
 "type": "Number",
 "value": 0.64
 }
 }
]
 },
 "a5f7e943-fbe8-4427-ae5e-7d5d3eff5fdf": {
 "occupancy": [
 {
 "occupancyRate": {
 "type": "Number",
 "value": 0.73

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 12

 }
 }
]
 }

}

2.4.3. ResourceRequest
interface ResourceRequest {

 [containerLabel1]: Array<String>;
 [containerLabel2]: Array<String>;
 [containerLabel..n]: Array<String>;

<_referenceVariable1>?: String;
<_referenceVariable2>?: String;
<_referenceVariable..n>?: String;

 }

The ResourceRequest structure consists of a dictionary of one or more containers of
dynamic data fields to be retrieved. The key of the dictionary is the containerLabel for
easy programmatic access to a set of related information within a resource bundle and is
free for the calling application to determine (must not contain an underscore “_” prefix).

In addition, the calling API request can pass special reference variables (identified by an
underscore _ prefix), which will be placed in the ResourceBundle associated with the
resource. This is used to allow easy matching during post-processing of the resource
bundle to other assets such as zones.

The following is an JSON example of a ResourceRequest request. The calling API has
requested dynamic data for two separate resources. The first resource only requests the
occupancy rate, the second requires the occupancy last updated field as well. The
container label is defined as “occupancy” but could be any label of choice. Also passed are
reference variables called “_zoneId” which provide zoneId information for each resource.

{
 "8f111740-6b83-4dc2-856b-d802e59084fb": {
 "_zoneId": "5428101f-f4f4-45ec-958c-369fce9d6f39",
 "occupancy": [
 "occupancyRate"
]
 },
 "a5f7e943-fbe8-4427-ae5e-7d5d3eff5fdf": {
 "_zoneId": "66158f96-38ab-4476-98d4-e925990b80ad",
 "occupancy": [
 "occupancyRate",
 "occupancyLastUpdate"
]
 }

}

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 13

2.4.4. ResourceBundle
interface ResourceBundle {

 [containerLabel1]: Array<DynamicDataResponse>;
 [containerLabel2]: Array<DynamicDataResponse>;
 [containerLabel..n]: Array<DynamicDataResponse>;

<_referenceVariable1>?: String;
<_referenceVariable2>?: String;
<_referenceVariable..n>?: String;

 }

The ResourceBundle structure consists of a dictionary of one or more containers of
dynamic data. The key of the dictionary is the containerLabel for easy programmatic
access to a set of related information within a resource bundle. The container label is
supplied by the calling application via the API Request parameters.

In addition, the calling API request can pass special reference variables (identified by an
underscore _ prefix), which will be placed in the bundle associated with the resource. This
is used to allow easy matching during post-processing of the resource bundle to other
assets such as zones.

The following is an JSON example of a ResourceBundle response. The calling API has
requested a container label of “occupancy” to contain the requested dynamic data
associated with occupancy information and has also passed a reference variable called
“_zoneId” which has the referenceId for the associated zoneId.

 {
 "8f111740-6b83-4dc2-856b-d802e59084fb": {

 "_zoneId": "5428101f-f4f4-45ec-958c-369fce9d6f39",
 "occupancy": [
 {
 "occupancyRate": {
 "type": "Number",
 "value": 0.64
 }
 },
 {
 "occupancyLastUpdate": {
 "type": "Date",
 "value": "2020-09-23T00:35:02.955Z"
 }
 }
]
 }

 }

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 14

3. API Reference Documentation

3.1. Overview
The Dynamic Data API is a API resource providing two methods for obtaining dynamic
data. One of these suits the quick access of dynamic data for a singular resource with
limited container structuring, and the other allows for many resources with flexible
structuring into containers.

Method Purpose

Simple Query Allows a limited query pertaining to one resource only. It is referred to within
this document as a simple query.

Complex Query Allows for a more flexible query pertaining to one or more resources. Dynamic
data can be structured in one or more containers. It is referred to within this
document as a complex query.

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 15

4. Simple Query
Given a set of query parameters, returns dynamic data information for a singular resource
under one container.

4.1. Resource Information
The Dynamic Data API Simple Query resource information is as follows:

Method Purpose

Response formats JSON (application/json)

Requires authentication? Yes (X-API-Token Header)

Rate limited? No

Requests N/A

4.2. Request
The Dynamic Data API Simple Query resource request information is as follows:

Method URL

GET https://data-collection-api.spotparking.com.au/1.4/ dynamic

Note: Please take consideration of case in all API calls.

4.3. Headers
The Dynamic Data API Simple Query requires the following HTTP Header information to
be passed within the request in order to function:

Header Description Example / Setting

X-API-Token Authentication Token

(provided by Spot Parking)

Example:
fHoX5l4bo22Xvv7n5dQDaFf7p

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 16

4.1. Parameters
The Dynamic Data API Simple Query expects all parameters to be passed as querystring.
The following parameters are acceptable or expected:

Name Type Description Required

resourceId String

The identifier of the associated
resource that the dynamic data
requested belongs to

Mandatory

keys Strings
separated with
commas

A list of one or more dynamic data
fields to be returned, separated by
commas.

Mandatory

container String The containerLabel to group
returned dynamic data information
into.

If container is not specified, then the
response will default to a label called
‘default’

Optional

_<field> String Any querystring parameters prefixed
with an underscore will be returned in
the response within the
ResourceBundle structure.

This is useful to maintain references to
other assets such as zones when post-
processing the response.

Optional

4.1.1. Request Parameter Examples

The following examples demonstrates how parameters can be provided to perform certain
types of queries.

?resourceId=22fa1e5c-9a67-40a1-9c5e-ceee65115763&keys=occupancyRate,occupancyLastUpdate

Retrieves the occupancyRate and occupancyLastUpdate dynamic data for the resource
identified by 22fa1e5c-9a67-40a1-9c5e-ceee65115763. Information will be returned in a
container labeled “default”.

?resourceId=22fa1e5c-9a67-40a1-9c5e-ceee65115763&keys=poiLinks&container=info
&_zoneId=5428101f-f4f4-45ec-958c-369fce9d6f39

Retrieves the dynamic data for the resource identified by 22fa1e5c-9a67-40a1-9c5e-
ceee65115763. Information will be returned in a container labeled “info” and the _zoneId
field will also be placed into the container response.

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 17

4.2. Response
The Dynamic Data API Simple Query provides a response in JSON format. The structure
of the response is as follows:

interface SimpleQueryResponse {
 data: QueryResponse;

 }

The Dynamic Data API Simple Query will only contain dynamic data for one resource, and
with one container consolidating all the dynamic data requested.

4.3. Example

GET /1.4/dynamic?resourceId=a5f7e943-fbe8-4427-ae5e-
7d5d3eff5fdf&keys=occupancyRate,occupancyLastUpdate&_zoneId=5428101f-f4f4-45ec-958c-
369fce9d6f39&container=info HTTP/1.1
Host: data-collection-api.spotparking.com.au
User-Agent: curl/7.64.1
Accept: */*
X-API-Token: <API_Token>

HTTP/1.1 200 OK
Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept, X-API-Token
Access-Control-Allow-Methods: GET, POST, PUT, DELETE
Access-Control-Allow-Origin: *
Content-Type: application/json; charset=utf-8
Date: Wed, 23 Sep 2020 06:13:12 GMT
ETag: W/"10a-zwIFuJ92uVKUHmYWdIVme46Bqi0"
X-Powered-By: Express
Content-Length: 266
Connection: keep-alive

{
 "data": [
 {
 "resourceId": "a5f7e943-fbe8-4427-ae5e-7d5d3eff5fdf",
 "key": "occupancyRate",
 "value": {
 "type": "Number",
 "value": 0.33
 }
 },
 {
 "resourceId": "a5f7e943-fbe8-4427-ae5e-7d5d3eff5fdf",
 "key": "occupancyLastUpdate",
 "value": {
 "type": "Date",
 "value": "2020-09-23T06:13:03.632Z"
 }
 }
]
}

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 18

5. Complex Query
Given a set of query parameters, returns dynamic data information for one or more
resource under one or more containers.

5.1. Resource Information
The Dynamic Data API Complex Query resource information is as follows:

Method Purpose

Response formats JSON (application/json)

Requires authentication? Yes (X-API-Token Header)

Rate limited? No

Requests N/A

5.2. Request
The Dynamic Data API Complex Query resource request information is as follows:

Method URL

POST https://data-collection-api.spotparking.com.au/1.4/ dynamic/complex

Note: Please take consideration of case in all API calls.

5.3. Headers
The Dynamic Data API Complex Query requires the following HTTP Header information
to be passed within the request in order to function:

Header Description Example / Setting

X-API-Token Authentication Token

(provided by Spot Parking)

Example:
fHoX5l4bo22Xvv7n5dQDaFf7p

Content-Type MIME Type of JSON application/json

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 19

5.4. Parameters
The Dynamic Data API Complex Query resource expects all parameters to be passed
within a JSON object structure passed via the Request Body. The following parameters are
acceptable or expected:

Name Type Description Required

requiredData Structure

Contains a QueryRequest structure
containing the information required

Mandatory

5.4.1. Request Parameter Examples

The following examples demonstrates how parameters can be provided to perform certain
types of queries.

{
 "requiredData": {
 "8f111740-6b83-4dc2-856b-d802e59084fb": {
 "_zoneId": "5428101f-f4f4-45ec-958c-369fce9d6f39",
 "occupancy": [
 "occupancyRate"
]
 },
 "a5f7e943-fbe8-4427-ae5e-7d5d3eff5fdf": {
 "_zoneId": "66158f96-38ab-4476-98d4-e925990b80ad",
 "occupancy": [
 "occupancyRate",
 "occupancyLastUpdate"
]
 }
 }

}

5.5. Response
The Dynamic Data API Complex Query provides a response in JSON format. The
structure of the response is as follows:

interface ComplexQueryResponse {
 data: QueryResponse;

 }

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 20

Unlike the Dynamic Data API Simple Query, a Complex query can contain dynamic data
for multiple resources, and with multiple containers consolidating all the dynamic data
requested.

5.6. Example

POST /1.4/dynamic/complex HTTP/1.1
Host: data-collection-api.spotparking.com.au
User-Agent: curl/7.64.1
Accept: */*
X-API-Token: <API_Token>
Content-Type: application/json
Body:
{
 "requiredData": {
 "8f111740-6b83-4dc2-856b-d802e59084fb": {
 "_zoneId": "5428101f-f4f4-45ec-958c-369fce9d6f39",
 "occupancy": [
 "occupancyRate"
]
 },
 "a5f7e943-fbe8-4427-ae5e-7d5d3eff5fdf": {
 "_zoneId": "66158f96-38ab-4476-98d4-e925990b80ad",
 "occupancy": [
 "occupancyRate",
 "occupancyLastUpdate"
]
 }
 }
}

HTTP/1.1 200 OK
Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept, X-API-Token
Access-Control-Allow-Methods: GET, POST, PUT, DELETE
Access-Control-Allow-Origin: *
Content-Type: application/json; charset=utf-8
Date: Wed, 23 Sep 2020 06:13:12 GMT
ETag: W/"10a-zwIFuJ92uVKUHmYWdIVme46Bqi0"
X-Powered-By: Express
Content-Length: 266
Connection: keep-alive

{
 "data": {
 "8f111740-6b83-4dc2-856b-d802e59084fb": {
 "_zoneId": "5428101f-f4f4-45ec-958c-369fce9d6f39",
 "occupancy": [
 {
 "occupancyRate": {
 "type": "Number",
 "value": 0.29
 }
 }
]
 },
 "a5f7e943-fbe8-4427-ae5e-7d5d3eff5fdf": {
 "_zoneId": "66158f96-38ab-4476-98d4-e925990b80ad",
 "occupancy": [
 {
 "occupancyRate": {

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 21

 "type": "Number",
 "value": 0.34
 }
 },
 {
 "occupancyLastUpdate": {
 "type": "Date",
 "value": "2020-09-23T06:21:03.387Z"
 }
 }
]
 }
 }
}

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 22

6. Status Codes
The API uses the following HTTP status codes. 2XX – Success; 4XX - Error in client; 5XX -
Error in server.

Status Code Description

200 OK

201 Created

202 Accepted (Request accepted, and queued for execution)

400 Bad request

401 Authentication failure

403 Forbidden

404 Resource not found

405 Method Not Allowed

409 Conflict

412 Precondition Failed

413 Request Entity Too Large

500 Internal Server Error

501 Not Implemented

503 Service Unavailable

Spot Parking Open Data API Specification – Dynamic Data v1.4 Revision v1.0

© 2020 - Spot Parking Provided under NDA Page 23

7. Determining Available Dynamic Data Fields
Available dynamic data fields are indicated by the dynamicData field found in resources
such as zones.

An example of a JSON Document for Zones zone definition with dynamic data defined is
shown below:

 {
 "id": "91abab08-28b2-43cc-bb07-0a8823cfa60a",
 "paths": { … },
 "assetType": "garage",
 "schedule": { … },
 "customName": "Peninsular Carpark",
 "dynamicData": {
 "occupancy": {
 "keys": [
 "occupancyRate",
 "occupancyLastUpdate"
],
 "refreshRate": 120
 }
 },
 "resourceId": "8f111740-6b83-4dc2-856b-d802e59084fb"

 }

The two important fields to consider here are dynamicData and resourceId.

Within the dynamicData field is a container with two dynamic data keys for occupancy,
as well as a field called refreshRate. The refreshRate refers to the recommended
refresh frequency for updating the field information in seconds. In this example, it is
recommending an update every two minutes.

The resourceId field represents the resourceId to pass to the Dynamic Data Query APIs
as defined.

Typically, a JSON Document or the ZoneGroups API call may result in multiple zones with
the dynamicData field defined. It is highly recommended to utilise the Complex Query
method and collect the dynamic data of all resources within one request, rather than
generating multiple Single Query requests, placing unnecessary burden on the Spot
Platform infrastructure.

